

Objective and Strategy	Concrete	Pictorial	Abstract
Combining two parts to make a whole: partwhole model.	Use part-part whole model. Use cubes to add two numbers together as a group or in a bar.	Use pictures to add two numbers as a group or in a bar. Bell 2 Hah 8 \square	Use the part-part whole diagram as shown below to move into the abstract. $4+3=7$ $10=6+4$
Starting at the bigger number and counting on.	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	Start at the larger number on the number line and count on in ones or in one jump to find the answer. $12+5=17$	Place the larger number in your head and count on the smaller number to find your answer. $12+5=17$
Regrouping to make 10. This is an essential skill for column addition later.	Start with the bigger number and use the smaller number to make 10. Use ten frames. $6+5=11$	Use pictures or a number line. regroup or partition the smaller number using the partpart whole model to make 10. $9+5=14$	If I am at seven, how many more do I need to make 10? How many more do ladd on now? $7+3=10$
Represent and use number bonds and related subtraction facts within 20.	2 more than 5.		Emphasis should be on the language. ' 1 more than 5 is equal to 6 .' ' 2 more than 5 is 7. ' ' 8 is 3 more than 5.'

Objective and strategy	Concrete	Pictorial	Abstract							
Adding multiples of 10	Model using dienes and bead strings $50=30+20$	Use representations for base ten．	$\begin{aligned} & 20+30=50 \\ & 70=50+20 \\ & 40+\quad=60 \end{aligned}$							
Use known facts Part－part whole	Children explore ways of making numbers within 20.		$\begin{array}{ll} \square+1=16 & 16-1=\square \\ 1+\square=16 & 16-\square=1 \end{array}$							
Using known facts	$\begin{aligned} & \square_{\square} \square+\square_{\square}=\square_{\square} \square_{\square} \square^{\square} \\ & \square \square \square+\square \square \square \end{aligned}$	Children draw representation of $\mathrm{H}, \mathrm{T}, \mathrm{O}$ $\begin{aligned} & \because+\because=\vdots \\ &\\|\\|+\\|\\|=\\| \\| \\| \\ & \square \square+日 \square=\pi 日 \\ & \square \square 日 \end{aligned}$	$3+4=7$ Leads to $30+40=70$ Leads to $300+400=700$							
Bar model	$3+4=7$	$7+3=10$	23 25 p $23+25=48$							
Add a two－digit number and ones	$17+5=22$ Use ten frames to mak Children explore the pi $\begin{aligned} & 17+5=22 \\ & 27+5=32 \end{aligned}$	Use part－part whole and number line to model．	$17+5=22$ Explore related facts							

Add a 2-digit number and a tens	Explore that the ones digit does not change. $25+10=35$		$\begin{aligned} 27+10 & =37 \\ 27+20= & 47 \\ 27+\quad= & 57 \end{aligned}$
Add two 2-digit numbers	Model using dienes, place value counters and numicon.	Use number line and bridge ten using part whole if necessary.	$\begin{gathered} 25+47 \\ 20+5 \\ 20+40=60 \\ 5+7=12 \\ 60+12=72 \end{gathered}$
Add three 1-digit numbers.	Combine to make 10 first if possible, or bridge 10 then add third digit. $\begin{gathered} 7+3=10 \\ 10+2=12 \end{gathered}$	Regroup and draw representation.	Combine the two numbers that make / bridge ten then add on the third. $\begin{aligned} \frac{4+7+6}{10} & =10+7 \\ & =17 \end{aligned}$

Objective and strategy	Concrete	Pictorial	Abstract
Column addition - no regrouping (friendly numbers) Add two or three 2 or 3digit numbers.	Model using dienes or numicon. Add together the ones first, then the tens. Move to using place value counters. $44+15$	Children move to drawing the counters using tens and one frame.	Add the ones first, then the tens, then the hundreds. $\begin{array}{r} 223 \\ +114 \\ \hline 337 \end{array}$
Column addition with regrouping	Exchange ten ones for a ten. Model using numicon and place value counters.	Children can draw a representation of the grid to further support their understanding, carrying the ten underneath the line.	Start by partitioning the numbers before formal column to show the exchange. $\begin{gathered} 20+5 \\ \frac{40+8}{60+13}=73 \\ 536 \\ \frac{585}{621} \\ \frac{11}{21} \end{gathered}$

Year 4-6 Addition

Objective and strategy	Concrete	Pictorial	Abstract
Year 4 - add numbers with up to 4 digits	Children continue to use dienes or place value counters to add, exchanging ten ones for a ten and ten tens for a hundred and ten hundreds for a thousand.	Draw representations using place value grid.	Continue from previous work to carry hundreds as well as tens. $\begin{array}{r} 3517 \\ +\quad 396 \\ \hline 3913 \end{array}$ Relate to money and measures.
Year 5 - add numbers with more than 4 digits. Add decimals with 2 decimal places, including money.	As year 4. Introduce decimal place value counters and model exchange for addition.		$E 23 \cdot 5$ $+=57 \cdot 5$ $E 3$ 1
Year 6 - add several numbers of increasing complexity including adding money, measure and decimals with different numbers of decimal points.	As year 5	As year 5	Insert zeros for place value holders. $\begin{array}{r} 81,059 \\ 3,668 \\ 15,301 \\ +20,551 \\ \hline 120,579 \\ 1,11 \end{array}+\begin{array}{r} 23 \cdot 361 \\ 59 \cdot 770 \\ 93 \cdot 301 \\ 2 \end{array} 1$

Year 1 Subtraction

Objective and strategy	Concrete	Pictorial	Abstract
Taking away ones.	Use physical objects, counters, cubes etc to show how objects can be taken away. $6-4=2$ $4-2=2$	Cross out drawn objects to show what has been taken away. $15-3=12$	$\begin{gathered} 7-4=3 \\ 16-9=7 \end{gathered}$
Counting back	Move objects away from the group, counting backwards.	Count back in ones using a number line.	Put 13 in your head, count back 4. What number are you at?
Find the Difference	Compare objects and amounts. sister' Lay objects to represent bar model. smonem	Count on using a number line to find the difference.	Hannah has 12 sweets and her sister has 5. How many more does Hannah have than her sister?
Represent and use number bonds and related subtraction facts within 20. PartPart Whole model	Link to addition. Use part-part whole model to model the inverse. If 10 is the whole and 6 is one of the parts, what's the other part?	Use pictorial representations to show the part.	Move to using numbers within the part whole model.
Make 10	Make 14 on the tens frame. Take 4 away to make ten, then take one more away so that you have taken 5.	Jump back 3 first, then another 4 . Use ten as the stopping point.	How many do we take off first to get to 10? How many are left to take off? $16-8$

	$14-9=5$	$13-7=6$ $13-7=6$		
Bar model	$5-2=3$		8 $\begin{aligned} & 10=8+2 \\ & 10=2+8 \\ & 10-2=8 \\ & 10-8=2 \end{aligned}$	2

Year 2 Subtraction

Objective and strategy	Concrete	Pictorial	Abstract
Re-group a ten into ten ones.	Use a Place Value chart to show how to change a ten into ten ones, use the term 'take and make'	$\begin{aligned} & 333 \\ & 20-4= \end{aligned}$	$20-4=16$
Partitioning to subtract without regrouping.	Use Dienes to show how to partition the number when subtracting without regrouping. $34-13=21$	Children draw representations of dienes and cross off. $43-21=22$	$43-21=22$
Make ten strategy. Progression should be crossing one ten, crossing more than one ten, crossing the hundreds	Use a bead bar or bead strings to model counting to the next ten and the rest.	Use a number line to count on to next ten and then the rest.	$93-76=17$

Year 3 Subtraction

Objective and strategy	Concrete	Pictorial	Abstract			
Column subtraction without regrouping.	Use base 10 or Numicon to model. $\\|\\|: 47-32$ $\\|:-$	Draw representations to support understanding.	Intermediate step may be needed to lead to clear subtraction understanding. $\begin{gathered} 47-24=23 \\ -\frac{40+7}{-20+4} \\ \hline 20+3 \\ 32 \\ -12 \\ 20 \end{gathered}$			
Column subtraction with regrouping.	Begin with base 10 or Numicon. Move to place value counters, modelling the exchange of a ten into ten ones.	Children may draw base ten or PV counters and cross off.	Begin by partitioning into place value columns. $\begin{gathered} 836-254=582 \\ 880 \quad 130 \\ -6 \\ 200 \quad 50 \quad 4 \\ \hline 500 \quad 80 \quad 2 \\ \hline \end{gathered}$ Then move to formal method. $\begin{array}{ccc} 728 & -582 & =146 \\ 41 & 7 & 8 \\ 7 & 2 & 8 \\ 5 & 8 & 2 \\ \hline 1 & 4 & 6 \\ \hline \end{array}$			

Year 4-6 Subtraction

Objective and strategy	Concrete	Pictorial	Abstract
Year 4-Subtract with up to 4 digits. Subtracting tens and ones. Introduce decimal subtraction through context of money.	Model the process of exchange using Numicon, base ten and then move to place value counters. 234-179	Children to draw place value counters and show their exchange (see year 3)	Show the exchange.
Year 5-Subtract with at least 4 digits, including money and measures. Subtract with decimal values, including mixtures of integers and decimals and aligning the decimal.	As year 4.	Children to draw place value counters and show their exchange-see Y3	Use zeros for placeholders. $\begin{array}{r} { }^{2} 8 " \times 10.81 \\ -\quad 2128 \\ \hline 28,928 \\ \hline 7{ }^{\prime \prime} \times 169 \cdot 0 \\ -\quad 372.5 \\ \hline 6796.5 \end{array}$
Year 6-Subtract with increasingly large and more complex numbers and decimal values.			

Year 1 Multiplication

Objective and strategy	Concrete	Pictorial	Abstract
Doubling	Use practical activities using manipulatives including cubes and Numicon to demonstrate doubling.	Draw pictures to show how to double numbers. Double 4 is 8	Partition a number and then double each part before recombining it back together.
Counting in multiples.	Count the groups as children are skip counting, children may use their fingers as they are skip counting.	Children make representations to show counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. $\begin{aligned} & 2,4,6,8,10 \\ & 5,10,15,20,25,30 \end{aligned}$
Making equal groups and counting the total.	Use manipulatives to create equal groups.	Draw and make representations. Draw to show $2 \times 3=6$	$2 \times 4=8$
Repeated addition.	Use different objects to add equal groups.	Use pictorial including number lines to solve problems. There are 3 sweets in 1 bag. How many sweets are there in 5 bags altogether?	Write repeated addition sentences to describe objects and pictures.

Year 2 Multiplication

Objective and strategy	Concrete	Pictorial	Abstract
Doubling	Model doubling using dienes and place value counters.	Draw pictures and representations to show how to double numbers.	Partition a number and then double each part before recombining it back together.
Counting in multiples of 2, 3, 4, 5, 10 from 0 (repeated addition)	Count the groups as children are skip counting, children may use their fingers as they are skip counting. Use bar models. $5+5+5+5+5+5+5+5=40$	Number lines, counting sticks and bar models should be used to show representation of counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. $\begin{aligned} & 0,2,4,6,8,10 \\ & 0,3,6,9,12,15 \\ & 0,5,10,15,20,25,30 \end{aligned}$
Multiplication is commutative	Create arrays using counters, cubes and Numicon. Pupils should understand that an array can represent different equations and that, as multiplication is commutative, the order of the multiplication does not affect the answer.	Use representations of arrays to show different calculations and explore commutativity.	$\begin{aligned} & 12=3 \times 4 \\ & 12=4 \times 3 \end{aligned}$ Use an array to write multiplication sentences and reinforce repeated addition. $\begin{aligned} & 5+5+5=15 \\ & 3+3+3+3+3=15 \\ & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}$

Using the Inverse. This should be taught alongside division, so pupils	Use counters or cubes to introduce the inverse.	Use number pyramids and pictorial representations to show related facts.	Show all 8 related fact family sentences.
learn how they work			
alongside each			
other.			

Year 3 Multiplication

Year 4 Multiplication

Objective and strategy	Concrete	Pictorial	Abstract
Grid method recap from year 3 for 2 digits $\times 1$ digit Move to multiplying 3digit numbers by 1 digit. (year 4 expectation)	Use place value counters to show how we are finding groups of a number. We are multiplying by 4 so we need 4 rows. Fill each row with 126 . Add up each column, starting with the ones making any exchanges needed. Give a final answer. $4 \times 126=504$	Children can represent their work with place value counters in a way that they understand. They can draw the counters using colours to show different amounts or just use the circles in the different columns to show their thinking as shown below.	Start by multiplying with 1-digit numbers and showing clear addition alongside the grid. $210+35=245$
Column multiplication	Children can continue to be supported by place value counters at the stage of multiplication. This initially done where there is no regrouping. 321 x $2=642$. It is important at this stage that they always multiply the ones first.	The grid method may be used to show how this relates to a formal written method. Bar modelling and number lines can support learners when solving problems with multiplication alongside the formal written methods.	This may lead to a compact method.

Year 5-6 Multiplication

Objective and strategy	Concrete	Pictorial	Abstract
Column multiplication for 3 and 4-digits by 1 digit.	It is important at this stage that they always multiply the ones first. Children can continue to be supported by place value counters at the stage of multiplication. This initially done where there is no regrouping. 321 x 2 = 642	The grid method may be used to show how this relates to a formal written method.	$\begin{array}{r} 327 \\ \times \quad 4 \\ \hline 28 \\ 80 \\ 1200 \\ \hline 1308 \end{array}$ This may lead to a compact method.
Column multiplication	Manipulatives may still be used with the corresponding long multiplication modelled alongside.	Continue to use bar modelling to support problem solving.	$\begin{array}{r} 1234 \\ \times \quad 16 \\ \hline 7404 \\ 12340 \\ \hline 19744 \end{array}$
Year 6- Multiplying decimals up to 2 decimal places by a single digit.			Remind children that the single digit belongs in the units column. Line up the decimal points in the question and then answer.

Nursery and EYFS Division

Objective and Strategy Models and Guidance	Nursery and Reception: By the end of Reception, children are expected to understand the concept of halving and sharing. Before this can be To solve problems, including halving then introduced to the concept of halving and sharing through practical games and activities. They act out 'halving and sharing' through activities and sharing. such as sharing food for their Teddy Bear's Picnic, sharing resources equally to play a game. This is reinforced by opportunities provided in the outdoor area for the children to halve and share out objects such as building blocks, twigs etc.

Year 1 Division

| Objective and
 strategy | Concrete | | |
| :--- | :--- | :--- | :--- | :--- |
| Division as
 sharing.
 Use ITPs for
 modelling. | Use cubes, counters and real-life
 objects to share. | Children use pictures to share different quantities. | Abstract |

Year 2 Division

Objective and strategy	Concrete	Pictorial	Abstract
Division as grouping	Use cubes, counters, objects or place value counters to aid understanding. 24 divided into groups of $6=4$ $96+3=32$	Continue to use bar modelling to aid solving division problems. $\begin{aligned} & 20 \div 5=? \\ & 5 \times ?=20 \end{aligned}$	How many groups of 6 in 24? $24 \div 6=4$
Division with arrays	Link division to multiplication by creating an array and thinking about the number sentences that can be created. $\begin{array}{ll} 15 \div 3=5 & 5 \times 3=15 \\ 15 \div 5=3 & 3 \times 5=15 \end{array}$	Draw an array and use lines to split the array into groups to make multiplication and division sentences.	Find the inverse of multiplication and division sentences by creating eight linking number sentences.

Division with remainders	Divide objects between groups and see how much is left over. $14 \div 3$	Jump forward in equal jumps on a number line then see how many more you need to jump to find a remainder. Draw dots and group them to divide an amount and clearly show a remainder. Use bar models to show division with remainders.				Complete written divisions and show the remainder using the notation of ' r '.
	Example without remainder: $40 \div 5$ Ask 'How many $5 s$ in 40% Example with remainder: $38+6$ For larger numbers, when it becomes inefficient to count in single multiples, bigger jumps can be recorded using known facts.					

Year 4-6 Division

$\begin{gathered} \underline{\text { Objective }} \\ \begin{array}{c} \text { and } \\ \text { strategy } \end{array} \\ \hline \end{gathered}$	Concrete	Pictorial	Abstract
Divide at least 3-digit numbers by a 1-digit number. Short Division.	Use place value counters to divide using the bus stop method alongside. $42 \div 3$ ○○○○ Start with the biggest place value, we are sharing 40 into three groups. We can put 1 ten in each group and we have 1 ten left over.' We exchange this ten for ten ones and then share the ones equally among the groups. We look how much in 1 group so the answer is 14 .	Children can continue to use drawn diagrams with dots or circles to help them divide numbers into equal groups. Encourage children to move towards counting in multiples to divide more efficiently.	Begin with divisions that divide equally with no remainders. Move onto divisions with a remainder. Finally move into decimal places to divide the total accurately. $\frac{0663}{8 \longdiv { 5 ^ { 5 } 3 ^ { 5 } 0 ^ { 2 } 9 }}$

